51 research outputs found

    Statistics of precursors to fingering processes

    Full text link
    We present an analysis of the statistical properties of hydrodynamic field fluctuations which reveal the existence of precursors to fingering processes. These precursors are found to exhibit power law distributions, and these power laws are shown to follow from spatial qq-Gaussian structures which are solutions to the generalized non-linear diffusion equation.Comment: 7 pages incl. 5 figs; tp appear in Europhysics Letter

    Is the Tsallis entropy stable?

    Full text link
    The question of whether the Tsallis entropy is Lesche-stable is revisited. It is argued that when physical averages are computed with the escort probabilities, the correct application of the concept of Lesche-stability requires use of the escort probabilities. As a consequence, as shown here, the Tsallis entropy is unstable but the thermodynamic averages are stable. We further show that Lesche stability as well as thermodynamic stability can be obtained if the homogeneous entropy is used as the basis of the formulation of non-extensive thermodynamics. In this approach, the escort distribution arises naturally as a secondary structure.Comment: 6 page

    Coupling of thermal and mass diffusion in regular binary thermal lattice-gases

    Full text link
    We have constructed a regular binary thermal lattice-gas in which the thermal diffusion and mass diffusion are coupled and form two nonpropagating diffusive modes. The power spectrum is shown to be similar in structure as for the one in real fluids, in which the central peak becomes a combination of coupled entropy and concentration contributions. Our theoretical findings for the power spectra are confirmed by computer simulations performed on this model.Comment: 5 pages including 3 figures in RevTex

    Lattice gas with ``interaction potential''

    Full text link
    We present an extension of a simple automaton model to incorporate non-local interactions extending over a spatial range in lattice gases. {}From the viewpoint of Statistical Mechanics, the lattice gas with interaction range may serve as a prototype for non-ideal gas behavior. {}From the density fluctuations correlation function, we obtain a quantity which is identified as a potential of mean force. Equilibrium and transport properties are computed theoretically and by numerical simulations to establish the validity of the model at macroscopic scale.Comment: 12 pages LaTeX, figures available on demand ([email protected]

    Chemically Driven Hydrodynamic Instabilities

    Get PDF
    info:eu-repo/semantics/publishe

    Dependence of the liquid-vapor surface tension on the range of interaction: a test of the law of corresponding states

    Full text link
    The planar surface tension of coexisting liquid and vapor phases of a fluid of Lennard-Jones atoms is studied as a function of the range of the potential using both Monte Carlo simulations and Density Functional Theory. The interaction range is varied from rc=2.5r_c^* = 2.5 to rc=6r_c^* = 6 and the surface tension is determined for temperatures ranging from T=0.7T^* = 0.7 up to the critical temperature in each case. The results are shown to be consistent with previous studies. The simulation data are well-described by Guggenheim's law of corresponding states but the agreement of the theoretical results depends on the quality of the bulk equation of state.Comment: 13 pages, 5 figure

    Hot spots in density fingering of exothermic autocatalytic chemical fronts

    Get PDF
    A light field is commonly described by a two-plane representation with four dimensions. Refocused three-dimensional contents can be rendered from light field images. A method for capturing these images is by using cameras with microlens arrays. A dense sampling of the light field results in large amounts of redundant data. Therefore, an efficient compression is vital for a practical use of these data. In this paper, we propose a displacement intra prediction scheme with a maximum of two hypotheses for the compression of plenoptic contents from focused plenoptic cameras. The proposed scheme is further implemented into HEVC. The work is aiming at coding plenoptic captured contents efficiently without knowing underlying camera geometries. In addition, the theoretical analysis of the displacement intra prediction for plenoptic images is explained; the relationship between the compressed captured images and their rendered quality is also analyzed. Evaluation results show that plenoptic contents can be efficiently compressed by the proposed scheme. Bit rate reduction up to 60 percent over HEVC is obtained for plenoptic images, and more than 30 percent is achieved for the tested video sequences

    Phase behavior of a confined nano-droplet in the grand-canonical ensemble: the reverse liquid-vapor transition

    Full text link
    The equilibrium density distribution and thermodynamic properties of a Lennard-Jones fluid confined to nano-sized spherical cavities at constant chemical potential was determined using Monte Carlo simulations. The results describe both a single cavity with semipermeable walls as well as a collection of closed cavities formed at constant chemical potential. The results are compared to calculations using classical Density Functional Theory (DFT). It is found that the DFT calculations give a quantitatively accurate description of the pressure and structure of the fluid. Both theory and simulation show the presence of a ``reverse'' liquid-vapor transition whereby the equilibrium state is a liquid at large volumes but becomes a vapor at small volumes.Comment: 13 pages, 8 figures, to appear in J. Phys. : Cond. Mat

    Long-range correlations in non-equilibrium systems: Lattice gas automaton approach

    Full text link
    In systems removed from equilibrium, intrinsic microscopic fluctuations become correlated over distances comparable to the characteristic macroscopic length over which the external constraint is exerted. In order to investigate this phenomenon, we construct a microscopic model with simple stochastic dynamics using lattice gas automaton rules that satisfy local detailed balance. Because of the simplicity of the automaton dynamics, analytical theory can be developed to describe the space and time evolution of the density fluctuations. The exact equations for the pair correlations are solved explicitly in the hydrodynamic limit. In this limit, we rigorously derive the results obtained phenomenologically by fluctuating hydrodynamics. In particular, the spatial algebraic decay of the equal-time fluctuation correlations predicted by this theory is found to be in excellent agreement with the results of our lattice gas automaton simulations for two different types of boundary conditions. Long-range correlations of the type described here appear generically in dynamical systems that exhibit large scale anisotropy and lack detailed balance.Comment: 23 pages, RevTeX; to appear in Phys. Rev.

    Chemically Driven Hydrodynamic Instabilities

    Get PDF
    info:eu-repo/semantics/publishe
    corecore